Wielandt Acceleration for Mcnp5 Monte Carlo Eigenvalue Calculations

نویسندگان

  • Forrest Brown
  • F. Brown
چکیده

Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (keff) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt’s method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Testing for Mcnp5 Monte Carlo Eigenvalue Calculations

Determining convergence of Monte Carlo criticality problems is complicated by the statistical noise inherent in the random walks of the neutrons in each generation. The latest version of MCNP5 incorporates an important new tool for assessing convergence: the Shannon entropy of the fission source distribution, Hsrc. Shannon entropy is a well-known concept from information theory and provides a s...

متن کامل

Reactor Simulation with Coupled Monte Carlo and Computational Fluid Dynamics

This paper demonstrates the applicability of Monte Carlo analysis to perform nuclear reactor core simulations with thermofluid feedback from a computational fluid dynamics code. An interface program, McSTAR, was written to couple MCNP5 to the commercial computational fluid dynamics code STAR-CD. McStar is a Perl script which alternately executes MCNP5, STAR-CD and cross section update routines ...

متن کامل

A Novel Source Convergence Acceleration Scheme for Monte Carlo Criticality Calculations, Part Ii: Implementation & Results

A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems with the Monte Carlo method is presented in this paper. The new acceleration technique is based on a simple prescription for modifying the statistical importance of particles stored in the fission bank in order to bias the next generation source towards the fundamental mode solu...

متن کامل

A Novel Source Convergence Acceleration Scheme for Monte Carlo Criticality Calculations, Part I: Theory

A novel technique for accelerating the convergence rate of the iterative power method for solving eigenvalue problems is presented. Smoothed Residual Acceleration (SRA) is based on a modification to the well known fixed-parameter extrapolation method for power iterations. In SRA the residual vector is passed through a low-pass filter before the extrapolation step. Filtering limits the extrapola...

متن کامل

High Performance Parallel Monte Carlo Transport Computations for ITER Fusion Neutronics Applications

Large scale neutronics calculations for radiation safety and machine reliability are required to support design activities for the ITER fusion reactor which is currently in phase of construction. Its large size and complexity of diagnostics, control and heating systems and ports, and also channel penetrations inside the thick blanket shielding surrounding the 14 MeV D-T neutron source are essen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007